
MODELLING THE SOFTWARE TESTING
PROCESS

Kazimierz Worwa

Faculty of Cybernetics, Military University of Technology, 00-908 Warszawa,
Kaliskiego 2, Poland kworwa@wat.edu.pl

Abstract. An approach to formal modelling the program testing process is proposed
in the paper. Considerations are based on some program reliability-growth model that
is constructed for assumed scheme of the program testing process. In this model the
program under the testing is characterized by means of so-called characteristic matrix
and the program testing process is determined by means of so-called testing strategy. The
formula for determining the mean value of the predicted number of errors encountered
during the program testing is obtained. This formula can be used if the characteristic
matrix and the testing strategy are known. Formulae for evaluating this value when the
program characteristic matrix is not known are also proposed in the paper.
Keywords: software testing, software reliability, software reliability models.

1. Introduction

The testing of a newly developed program, prior to its practical use,
is a commonly followed practice. The program testing process involves the
execution of the program with many sets of input data with the inten-
tion of finding errors. Testing is done to lower the chances of in-service
failures which are defined as an unacceptable departure from a program
operation. A long period of testing results in increasing the chances of de-
tecting program errors and decreasing the chances of in-service failures,
but it also results in increasing the cost of the program testing process.
It is known that testing is the most significant money consuming stage
of the program development. A cost of the program testing process can
make even more than 50% of the total cost of the program development,
especially for complex program systems [12, 17]. Considering the essential
impact of the testing cost on the whole program development cost, the
testing process ought to be prudently planned and organized. Decisions
relative to the testing process organization should be made on the basis of
results of testing efficiency analysis. In order to make such analysis easier
it may be convenient to evaluate the number of program errors that could
be encountered during the program testing process. The knowledge of this
evaluation results makes it possible to evaluate the duration and the cost of
the program testing process, e.g. by means of formal, mathematical expres-
sions. Such estimations can be very useful in practice, e.g. for comparing

K. Worwa

the effectiveness of different ways of program testing process organizations
(i.e. in order to find an optimal organization).

For the purpose of the rational prediction of the program testing pro-
cess duration software reliability-growth models are recommended in this
paper. These models can provide a first program reliability-estimate and
support project management in planning further development processes.
Therefore many software reliability-growth models have been proposed in
the literature [1–5, 7–9, 11, 13–14, 18, 20, 24–26]. The number of models
that have actually been employed to assist with software development pro-
jects is, however, much smaller. The reason for this is that none of these
models give sufficiently accurate estimates of reliability. This seems to be
chiefly due to the fact that the authors of the various models have paid
little or no attention to the manner in which a software is tested. Software
reliability modelling has become one of the most important aspects in so-
ftware reliability engineering since Jelinski-Moranda [10] and Schooman
[16] models appeared. Various methodologies have been adopted to model
software reliability behaviour. The most of existing work on software re-
liability modelling is focused on continuous-time base, which assumes that
software reliability behaviour can be measured in terms of time. It may be
a calendar time, a clock time or a CPU execution time [1, 3, 7–9, 11, 13–14,
17, 20, 24, 26]. Although this assumption is appropriate for a wide scope of
software systems, there are many systems, which are essentially different
from this assumption. For example, reliability behaviour of a reservation
software system should be measured in terms of how many reservations are
successful, rather than how long the software operates without any failure.
Similarly, reliability behaviour of a bank transaction processing software
system should be assessed in terms of how many transactions are successful,
etc. Obviously, for these systems, the time base of reliability measurement
is essentially discrete rather than continuous. Models that are based on
a discrete-time approach are called input-domain or run-domain models
[2, 4–5, 22–23, 25]. They usually express reliability as the probability that
an execution of the software is successful. The paper [2] has been proposed
the terms a run and run reliability and a conceptual framework of software
run reliability modelling. A run is a minimum execution unit of software
and run reliability means the probability that software successfully perform
a run. The concrete sense of a run is subject to application context. For
example, a run can correspond to execution of a test case, of a program
path, etc.

This paper attempts to describe a new discrete-time software
reliability-growth model for some scheme of the program testing and to

360

Modelling the software testing process

determine a formula to evaluate the predicted number of program errors
encountered during the testing process.

2. The program testing scheme

An organization of a program testing process depends on the pro-
gram testing strategy which was selected for the testing. In particular, this
strategy defines the way of the testing process realization and the set of
program input data which is used for the testing. It is assumed that the
program testing process consists of a number of organizational units of the
program testing phase that are called the testing stages. Every stage of the
program testing process consists of the two following steps of testing:

— testing of the program under consideration with a prepared set of
program input data (tests),

— comparison of the results with the expected outputs for the data used
and removing all errors encountered during testing.

It is noteworthy that all program faults discovered during the first step of
some testing stage are only registered and removed only this step is finished.
Such organization of the testing stage means that testing and debugging are
performed in different steps (not simultaneously) and consequently some
program fault can be observed more than once in the testing stage. The
paper [25] has been underlined that above definition of the testing scheme
is used in the most mathematical models of software testing.

Let S mean the program testing strategy which is defined as follows

S = (K, (L1, L2, . . . , Lk, . . . , LK)) (1)

where: K – the number of stages of the program testing process,
Lk – the number of program input data used in the k-th program testing
stage, Lk > 0, k = 1,K

Execution of the program under the testing process with one input
data set (test case) will be called a run in this paper. The run can be
successful, if program execution did not lead to encounter any program
errors or not successful, if program execution was incorrect, i.e. some errors
were encountered.

Let S denote the set of all strategies that have the form (1). The
strategy (1) defines a program testing scheme. In accordance with this
scheme, the process of removing program errors which were encountered
during the k-th program testing stage can be started after the execution
of the program on all Lk tests is finished.

361

K. Worwa

According to assumed testing scheme a situation that a number of
different tests of all Lk tests executed during the k-th stage encounter the
same error in the program under the testing is possible. So, according to the
note mentioned above, a situation that several runs will lead to encounter
the same program error is possible.

Let pnm define the probability of an event that n errors will be enco-
untered during a single stage of the program testing if there are m tests
that have incorrect execution in that stage. If we assume that every exe-
cution of the program with a single test can lead to encounter at most one
program error, we will have

0 ≤ pnm ≤ 1 if n ≤ m, n ≥ 0 (2)

where in particular
p00 = p11 = 1

pnm = 0 if n > m
(3)

and
∞∑
n=0

pnm = 1, m ∈ {0, 1, 2, . . .}. (4)

Probabilities pnm, n ∈ {0, 1, 2, . . . ,m}, m ∈ {0, 1, 2, . . .}, form an infinite
matrix P = [pnm] as follows

P =

1 0 0 0 0 . . .
0 1 p12 p13 p14 . . .
0 0 p22 p23 p24 . . .
0 0 0 p33 p34 . . .
0 0 0 0 p44 . . .
...

...
...

...
...

. . .

 , (5)

where values pnm are defined by (2)–(4).
The matrix P contains the values 0 below the main diagonal because –

in accordance with earlier assumption that every execution of the program
with a single test can lead to encounter at most one program error – it is
not possible to encounter more different errors than the number of incorrect
runs.

The values of probabilities pnm for every program testing stage only
depend on the number of tests which are used during that stage.

The values of probabilities pnm that form the matrix P depend on
a logical structure of the program. In particular, an important impact on
these probabilities has:

362

Modelling the software testing process

— number of paths that have been identified in the program,
— degree of covering individual paths, that can be measured by number

of program instructions that belong to two or more paths,
— length of individual paths, measured by number of program instruc-

tions that are executed in case of path activation.

The matrix P will be called the characteristic matrix of the program under
testing.

3. Program reliability coefficient

Let Mk(S, P) denote the number of runs which lead to incorrect exe-
cution of the program under the testing, i.e. to encounter program errors,
during the k-th stage of program testing process according to the testing
strategy S and the characteristic matrix P .

Let Nk(S, P) mean the total number of errors encountered during
the k-th stage of program testing process in accordance with the testing
strategy S and the characteristic matrix P .

While planning the program testing process it is reasonable to treat the
values Mk(S, P) and Nk(S, P), k = 1,K, as random variables, Nk(S, P) ≤
Mk(S, P), k = 1,K.

Joint distribution of the random variables Nk(S, P), Mk(S, P) can be
determined as follows:

Pr{Nk(S, P) = nk,Mk(S, P) = mk}
= Pr{Nk(S, P) = nk/Mk(S, P) = mk}Pr{Mk(S, P) = mk}

(6)

Probability distribution of the random variable Nk(S, P) can be de-
termined as a marginal distribution in a distribution of two-dimensional
random variable (Nk(S, P),Mk(S, P)):

Pr{Nk(S, P) = nk}

=
Lk∑
mk=0

Pr{Nk(S, P) = nk/Mk(S, P) = mk}Pr{Mk(S, P) = mk}
(7)

Let N(S, P) mean the total number of errors encountered during the pro-
cess of the program testing in accordance with the testing strategy S and
the characteristic matrix P . The value N(S, P) is a random variable
and can be determined as follows:

N(S, P) =
K∑
k=1

Nk(S, P). (8)

363

K. Worwa

Taking into account assumed testing scheme probability distribution of the
random variable N(S,P) has the form:

Pr{N(S, P) = nk}

=
∑

n1+n2+...+nk=n

Pr{N1(S, P) = n1, N2(S, P) = n2, . . . , NK(S, P) = nK},

n = 0, 1, 2, . . .
(9)

where probabilities Pr{N1(S, P) = n1, N2(S, P) = n2, . . . , NK(S, P) =
nK} determine joint distribution of K-dimentional random variable
(N1(S, P), N2(S, P), . . . , NK(S, P)).

Probability distribution Pr{N1(S, P) = n1, N2(S, P) = n2, . . . ,
NK(S, P) = nK} can be determined as follows [21]

Pr{N1(S, P) = n1, N2(S, P) = n2, . . . , NK(S, P) = nK}

=
K∏
k=1

Lk∑
mk=0

Pr{Nk(S, P) = nk/Mk(S, P) = mk}

· Pr{Mk(S, P) = nk/Ni(S, P) = ni, i = 1, k − 1}

(10)

where

Pr{Mk(S, P) = mk/Ni(S, P) = ni, i = 1, k − 1}
= Pr{Mk(S, P) = mk/N1(S, P) = n1, N2(S, P) = n2,

. . . , Nk−1(S, P) = nk−1

(11)

and N0(S, P) = 0.
According to earlier denotations we have

pnm = Pr{Nk(S) = n|Mk(S)=m}, k = 1,K − 1, (12)

so formula (10) takes a form:

Pr{N1(S, P) = n1, N2(S, P) = n2, . . . , NK(S, P) = nK}

=
K∏
k=1

Lk∑
mk=0

pnkmkPr{Mk(S, P) = mk/Ni(S, P) = ni, i = 1, k − 1}
(13)

364

Modelling the software testing process

By the substitution of this equation into (9), we get:

Pr{N(S, P) = n} =
∑

n1+n2+...+nK=n

Pr{N1(S, P) = n1, N2(S, P) = n2

, . . . , NK(S, P) = nK}

=
∑

n1+n2+...+nK=n

K∏
k=1

Lk∑
mk=0

pnkmkPr{Mk(S, P) = mk/Ni(S, P) = ni,

i = 1, k − 1}
(14)

As a result of program testing process execution, in accordance with
the assumed testing strategy S, N(S, P) program errors will be encoun-
tered. Successful removing these errors will increase the level of program
reliability. The number of encountered errors N(S, P) depends on both as-
sumed testing strategy and initial level of program reliability, i.e. reliability
of the program at the beginning of the program testing process.

It is very well known that in spite of successful testing phase realization
the program can still contain some errors. Bearing this fact in mind it is
rationally to describe a result X(S, P) of one program execution, after
finishing the testing process according to strategy S, as follows:

X(S, P) =

1 if an execution of the program with characteristic

matrix P ,that was tested in accordance with the
strategy S, is correct;

0 otherwise.

Planning the phase of program testing process it is rationally to treat
amounts N(S, P) and X(S, P) as dependent random variables, because the
result X(S, P) of program execution for some input data set, after finishing
the testing according to strategy S, depends on a number of errors N(S, P)
encountered during this process.

Let r(S, P) mean a probability of a correct execution of the program
with the characteristic matrix P , after finishing the testing process accor-
ding to the strategy S, i.e.

r(S, P) = Pr{X(S, P) = 1}. (15)

The probability r(S, P) will be treated as a program reliability measure in
the paper.

365

K. Worwa

We can write:

r(S, P) =
L(S)∑
n=0

r(S, P)|N(S,P)=n · Pr{N(S, P) = n}, (16)

where: r(S, P)|N(S,P)=n – conditional probability of a correct execution of
the program with the characteristic matrix P if the testing process, accor-
ding to the strategy S, leaded to encounter N(S, P) = n program errors;
L(S) – a total number of runs that are performed during testing the pro-
gram according to the strategy S, i.e.

L(S) =
K∑
k=1

Lk. (17)

By substitution of expression (14) into (16), we get

r(S, P) =
L(S)∑
n=0

r(S, P)|N(S,P)=n

=
∑

n1+n2+...+nK=n

K∏
k=1

Lk∑
mk=0

pnkmkPr{Mk(S, P) = mk/Ni(S, P) = ni

i = 1, k − 1}.
(18)

If a number of errors is encountered in the program and they are
successfully corrected, the program reliability level will increase. We will
describe it as follows:

r(S, P)|N(S,P)=n = r + ∆r(P, n), (19)

where: r – an initial value of the program reliability coefficient, i.e. value of
the program reliability coefficient at the beginning of the program testing
process,
∆r(P, n) – an increase of the reliability coefficient value of the program
with the characteristic matrix P , as a result of encountering and removing
n errors.

On the basis of facts described in literature (see e.g. [13, 17, 19]) it is
assumed that the increase ∆r(P, n) is of the form:

∆r(P, n) = (1− r)(1− eαn), (20)

366

Modelling the software testing process

where α is a parameter that characterizes both the internal structure of the
program under testing and the impact of one error removal on the increase
of the program reliability.

It should be stated that evaluating values of both parameters r and α
relies on the testing history of the software in practice.

Thus, by substituting the last equation into (19), we get:

r(S, P)|N(S,P)=n = 1− (1− r)e−αm. (21)

It is easy to notice that assumed testing scheme, such that probability of
successful performance of one run remains constant during testing stage,
leads to the so-called Bernoulli scheme. Consequently, conditional proba-
bilities from (18) can be determined by means the binominal distribution
as follows:

Pr{Mk(S, P) = mk/Ni(S, P) = ni, i = 1, k − 1}

=
(
Lk
mk

)
[e−α

∑k=1

i=1
ni(1− r)]mk [1− e−α

∑k=1

i=1
ni(1− r)]Lk−mk ,

mk ∈ {0, 1, 2, · · · , Lk}, k = 1,K.

(22)

Substituting (21) and (22) into (18), we get the following expression for the
program reliability coefficient r(S, P), after finishing the testing process
according to the strategy S:

r(S, P) = 1− (1− r)A(S, P), (23)

where

A(S, P) =
L1∑
n1=0

L2∑
n2=0

. . .

LK∑
nK=0

e−α
∑K

k=1
nk
K∏
k=1

Lk∑
mk=0

pnkmkAmk

(k−1∑
i=1

ni, Lk

)
(24)

and

Amk

(k−1∑
i=1

ni, Lk

)
=
(
Lk
mk

)
[e−α

∑k−1
i=1
ni(1− r)]mk [1− e−α

∑k−1
i=1
ni(1− r)]Lk−mk ,

mk ∈ {0, 1, 2, · · ·Lk}, k = 1,K.

(25)

367

K. Worwa

The quantity Amk
(∑k−1

i=1 ni, Lk
)
, mk ∈ {0, 1, 2, · · · , Lk}, ni ∈

{0, 1, 2, · · · , Lk}, k ∈ {1, 2, · · · ,K}, means probability that mk runs of all
Lk runs performed during the k-th testing stage will be incorrect, i.e. will
lead to encounter errors on condition that in the previous k − 1 testing
stages

∑k−1
i=1 ni errors were encountered and removed.

It is easy to check that

Lk∑
mk=0

Amk

(k−1∑
i=1

ni, Lk

)
= [1−e−α

∑k−1
i=1
ni(1−r)+e−α

∑k−1
i=1
ni(1−r)]Lk = 1

and

Lk∑
nk=0

Lk∑
mk=0

pnkmkAmk

(k−1∑
i=1

niLk

)
=

Lk∑
mk=0

Amk

(k−1∑
i=1

ni, Lk

) Lk∑
nk=0

pnkmk

=
Lk∑
mk=0

Amk

(k−1∑
i=1

ni, Lk

)
= 1.

The increase of the program reliability coefficient ∆r(S, P) = r(S, P)− r,
as a result of testing phase realization according to the strategy S, is of
the form:

∆r(S, P) = (1− r)(1−A(S, P)), (26)

where the quantity A(S, P) is determined by (24).
Let S′, S′′ ∈ S denote the following program testing strategies:

S′ = (L, (l, l, · · · , l)
L times

), (27)

S′′ = (1, L). (28)

It could be said that the above strategies S′ and S′′ are extreme forms of
the testing strategy (1). In particular, if the testing strategy has the form
S′ than it means that in every testing stage the program under testing
process is executed only once. Therefore, if the program execution encoun-
ters any fault it will be removed immediately, i.e. before next testing stage
will be started. For the strategy S′ becomes impossible to observe repeated
appearances of faults in any testing stage. Thus this strategy is very pro-
fitable from point of view of potential increase the program reliability, but
rather inefficient from economical aspect of the program testing process.

368

Modelling the software testing process

If the testing strategy has the form S′′ than it means that program testing
phase consists of only one testing stage containing all tests. Obviously, this
strategy is very attractive because of low cost of program testing process,
but probably it would not guarantee the sufficient increase of the program
reliability.
If the strategies S′ or S′′ are used the formulae for program reliability
coefficient r(S, P) will take the simplified forms:

r(S′, P)r(S′) = 1− (1−)
1∑
n1=0

e−αn1(1− r)n1r1−n1

1∑
n2=0

e−αn2 [e−αn1(1− r)]n2 [1− e−αn1(1− r)]1−n2

. . .
1∑

nK=0

e−αnK [e−α
∑K−1
m=1

nm(1− r)]nK [1− e−α
∑K−1
m=1

nm(1− r)]1−nk

(29)
and

r(S′′, P) =
L∑
n=0

e−αn
L∑
m=0

pnm

(
L
m

)
(1− r)mrL−m. (30)

The main advantage of using the strategy S′ consists in avoiding the po-
ssibility of encountering the same program error by different tests during
individual testing stages. From one hand, it makes possible to increase in
the effectiveness of the testing process that could me measured, for exam-
ple, by a total number of encountered fault with relation to total number
of tests, which were used in the testing process. From the other hand, the
main disadvantage of this strategy is connected with its economic ineffecti-
veness because of both high cost and long duration of the testing process.
Practical application of the strategy S′′ can be connected with the effect
of recapturing the same program errors by different tests during individual
testing stages. Obviously, this effect can meaningfully decrease in the ef-
fectiveness of the testing process. In particular, if the program under the
testing process has an incorrect instruction at the beginning of its source
code then it is possible that all tests used in some testing stage will encoun-
ter the same program error, related to this incorrect instruction. Because of
mentioned reasons, every practical testing strategy has character of some
compromise between the strategies S′ and S′′.
Let P mean the set of all matrices that have form P , i.e:

P = {P = [pnm], n,m ∈ {0, 1, 2, . . .} : probabilities pnm
meet constraints defined by (2)− (4)},

369

K. Worwa

where every individual program is characterized only by one characteristic
matrix P ∈ P .
Let P ∗, P ∗∗ denote characteristic matrices of the program under the testing
that have form:

P ∗ =

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 1 . . .
...

...
...

...
. . .

 , P ∗∗ =

1 0 0 0 . . .
0 1 1 1 . . .
0 0 0 0 . . .
0 0 0 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .

 . (31)

It can be proved [23] that if P ∗, P ∗∗ ∈ P are the matrices of the form (31)
then

∆r(S, P ∗) = max
P∈P

∆r(S, P) (32)

and

∆r(S, P ∗∗) = min
P∈P

∆r(S, P). (33)

The dependencies (32) and (33) make possible to obtain the following eva-
luation of the program reliability coefficient value for any program testing
strategy S ∈ S:

r(S, P ∗∗) ≤ r(S, P) ≤ r(S, P ∗). (34)

Double inequality (34) is a direct conclusion from (32) and (33). This in-
equality enables to two-side rough estimate of the program reliability co-
efficient value after the finishing the program testing process, according
to the testing strategy S. This estimate is better, i.e. more precise, than
0 ≤ r(S, P) ≤ 1 and may be useful in situation when the probabilities pnm,
that define the program characteristic matrix P , can not be determined in
practice.

4. Evaluating the mean value of the number of errors
encountered during the program testing process

Substituting (22) into (14), we get the following expression for pro-
bability distribution of the total number of errors encountered during the
program testing process, in accordance with the testing strategy S and the

370

Modelling the software testing process

characteristic matrix P :

Pr{N(S, P) = n}

=
∑

n1+n2+···+nK=n
Pr{N1(S) = n1, N2(S) = n2, · · · , Nk(S) = nK}

=
∑

n1+n2+···+nK=n

K∏
l=1

Ll∑
ml=0

pn1m1Am1

(l−1∑
i=1

ni, L1

)
, n = 0, L(S)

(35)

where the quantities Am1
(∑l−1

i=1 ni, L1
)

and L(S) are determined by (25)
and (17), respectively.
The knowledge of the probability distribution function (35) makes possible
to obtain a formula for the mean value of the number of errors encountered
during the program testing process according to the strategy S. We have

E[N(S, P)] =
L(S)∑
n=0

nPr{N(S, P) = n}, (36)

and then, according to (35):

E[N(S, P)] =
L(S)∑
n=0

n
∑

n1+n2+···+nK=n

K∏
l=1

L1∑
m1=0

pn1m1Am1

(l−1∑
i=1

ni, L1

)

=
K∑
k=1

L1∑
n1=0

L2∑
n2=0

. . .

LK∑
nK=0

nk

K∏
l=1

n1∑
m1=0

pn1m1Am1

(l−1∑
i=1

ni, L1

)
.

(37)
The formula (37) will be simplified if the program characteristic matrix P
is of the form (31), i.e.:

E[N(S, P ∗)]

= (1− r)
K∑
k=1

Lk

L1∑
n1=0

L2∑
n2=0

. . .

Lk−1∑
nk−1=0

e−α
∑k−1
i=1
ni
k−1∏
l=1

A∗n1

(l−1∑
i=1

ni, L1

)
,

(38)
and

E[N(S, P ∗∗)]

=
K∑
k=1

1∑
n1=0

A∗∗n1(0, L1) . . .
1∑

nk−1=0

A∗∗nk−1

(k−2∑
i=1

ni, Lk−1

)
A∗∗1

(k−1∑
i=1

ni, Lk

)
,

(39)

371

K. Worwa

where

A∗n1

(l−1∑
i=1

ni, L1

)
= [e−α

∑l−1
i=1
ni(1− r)]n1 [1− e−α

∑l−1
i=1
ni(1− r)]L1−n1

(40)
and

A∗∗nk

(k−1∑
i=1

ni, Lk

)
= {1− [1− e−α

∑k−1
i=1
ni(1− r)]Lk}nk{1− e−α

∑k−1
i−1
ni(1− r)}Lk(1−nk),

(41)
For example, if P = P ∗ and S = (2, (1, 1)), we will have

E[N(S, P ∗)] = (1− r)[1 + r + e−α(1− r)].

In practice, the formula (37) for evaluating the mean value of the number
of errors encountered during the program testing process can be used if
the program characteristic matrix P is known. If the probabilities pnkmk ,
nkmk ∈ {0, 1, 2, . . . , Lk}, k = 1,K, are unknown, it is possible to determine
the boundary values of this evaluation.
Let P ∗, P ∗∗ denote characteristic matrices of the program under the testing
of forms (31). Then, as proved in [23], for both any program testing strategy
S and any characteristic matrix P is:

E[N(S, P ∗∗)] ≤ E[N(S, P)] ≤ E[N(S, P ∗)], (42)

where the quantities E[N(S, P ∗)] and E[N(S, P ∗∗)] are determined by (38)
and (39), respectively.

5. Conclusions

In order to apply the methodology proposed in this paper, software
run reliability data must be available. Compared to the amount of software
reliability data reported in the literature, the amount of discrete-time
software reliability data is rather limited in relation to continuous-time
software reliability data, although some authors have published their own
data.
It is noteworthy that the parameters (including r, α and probabilities that
form the characteristic matrix P) of the presented in the paper program

372

Modelling the software testing process

reliability-growth model can be evaluated by using a process known as life
testing or statistical-usage testing, in which long-term behaviour of the
software is observed and values of these parameters are estimated on the
basis of the observations (see e.g. [6, 17]).
Sensible estimation of the values such parameters as r, α and pnm requires
a suitable data base of facts that contains information about similar former
programs under testing. As far as the data base of facts is concerned, it
is an important component of the software engineering. data base of facts
maintenance is especially useful if a software development process is stable
in a domain sense. The fundamental information that creates this data base
of facts concerns the backgrounds, the circumstances, the reasons and the
time of the program errors encounter. Detailed analysis of data included
in the data base of facts enables better understanding mutual relations be-
tween the types of software and the amount of program errors encountered
during development process. Such mathematical and statistical methods
as regression analysis, variation analysis, least square method, maximum
likelihood method etc. are the most popular for estimating the values of
parameters that are commonly used in software reliability models. The
practical usefulness of the parameter estimation methods mentioned above
can be confirmed by the results of researches described in several papers
(see e.g. [6, 13, 17]).

References

[1] S. Basu, N. Ebrahimi, Bayesian software reliability models based on
martingale processes, Technometrics, Vol. 45, pp. 150–158, 2003.

[2] K.Y. Cai, Towards a conceptual framework of software run reliability
modeling, Information Science, Vol. 126, No. 6, pp. 137–163, 2000.

[3] M. Chen, A.P. Mathur, V. Rego, Effect of testing techniques
on software reliability estimates obtained using a time-domain model,
IEEE Transactions on Reliability, Vol. 44, No. 1, pp. 97–103, 1995.

[4] T.Y. Chen, Y.T. Yu, On the relationship between partition and ran-
dom testing, IEEE Transactions on Software Engineering, Vol. 20, No.
12, pp. 977–980, 1994.

[5] T.Y. Chen, Y.T. Yu, On the expected number of failures detected by
subdomain testing and random testing, IEEE Transactions on Software
Engineering, Vol. 22, No. 2, pp. 109–119, 1996.

[6] R.H. Cobb, H.D. Mills, Engineering software under statistical qu-
ality control, IEEE Software, Vol. 16, pp. 44–54, 1990.

373

K. Worwa

[7] A. Csenki, Bayes predictive analysis of a fundamental software relia-
bility model, IEEE Transactions on Software Engineering, Vol. 39, No.
2, pp. 177–183, 1990.

[8] O. Gaudoin, Software reliability models with two debugging rates,
International Journal of Reliability, Vol. 6, No. 1, pp. 31–42, 1999.

[9] Y. Hayakawa, G. Telfar, Mixed poisson-type processes with appli-
cation in software reliability, Mathematical and Computer Modelling,
Vol. 31, pp. 151–156, 2000.

[10] Z. Jelinski, P.B. Moranda, Software Reliability Research, Statisti-
cal Computer Performance Evaluation, Academic Press, New York,
1972.

[11] D.R. Jeske, H. Pham, On the maximum likelihood estimates for the
Goel-Okumoto software reliability model, The American Statistician,
Vol. 3, pp. 219–222, 2001.

[12] E. Kit, Software testing in the real world, ACM Press Books, 1995.
[13] J.D. Musa, A. Iannino, K. Okumoto, Software reliability. Measu-
rement, prediction, application, McGraw-Hill, Inc., 1987.

[14] K. Sawada, H. Sandoh, Continuous model for software reliability de-
monstration testing considering damage size of software failures, Ma-
thematical and Computer Modelling, Vol. 31, pp. 321–326, 2000.

[15] G.J. Schick, R.W. Wolverton, An Analysis of Competing So-
ftware Reliability Models, IEEE Transactions on Software Engineering,
SE-4, No. 2, pp. 104–120, 1978.

[16] M.L. Shooman, Probabilistic Models for Software Reliability Predic-
tion, Statistical Computer Performance Evaluation. Academic Press,
New York, 1972.

[17] T.A. Thayer, M. Lipov, E.C. Nelson, Software reliability,
North-Holland Publishing Company, Amsterdam, 1978.

[18] K. Tokuno, S. Yamada, An imperfect debugging model with two
types of hazard rates for software reliability measurement and asses-
sment, Mathematical and Computer Modelling, Vol. 31, pp. 343–352,
2000.

[19] M. Trachtenberg, A general theory of software reliability modeling,
IEEE Transactions on Software Engineering, Vol. 39, No. 1, pp. 92–96,
1990.

[20] J.A. Whittaker, K. Rekab, M.G. Thomason, A Markov chain
model for predicting the reliability of multi-build software, Information
and Software Technology, Vol. 42, pp. 889–894, 2000.

[21] K. Worwa, Estimation of the program testing strategy. Part 1 – The
same errors can be encountered, Cybernetics Research and Develop-
ment, No. 3-4, pp. 155–173, 1995.

374

Modelling the software testing process

[22] K. Worwa, Estimation of the program testing strategy. Part 2 – The
same errors can not be encountered, Cybernetics Research and Deve-
lopment, No. 3-4, pp. 175–188, 1995.

[23] K. Worwa, Modelling and estimation of software reliability growth
during the testing process, Publishers of Warsaw Technical University,
Warsaw (in Polish), 2000.

[24] S. Yamada, T. Fujiwara, Testing-domain dependent software relia-
bility growth models and their comparisons of goodness-of-fit, Interna-
tional Journal of Reliability, No. 3, pp. 205–218, 2001.

[25] M.C. Yang, A. Chao, Reliability-estimation & stopping-rules for
software testing, based on repeated appearances of bugs. IEEE Trans-
actions on Reliability, Vol. 44, No. 2, pp. 315–321, 1995.

[26] X. Zhang, H. Pham, Comparisons of nonhomogeneous Poisson pro-
cess software reliability models and its applications, International Jour-
nal of Systems Science, No. 9, 2000, pp. 1115–1123.

MODELOWANIE PROCESU TESTOWANIA
OPROGRAMOWANIA

Streszczenie. Przedmiotem zawartych w artykule rozważań jest modelowanie procesu
testowania programu, ze szczególnym uwzględnieniem modelowania wzrostu niezawod-
ności programu w procesie jego testowania. W rozpatrywanym modelu testowany pro-
gram charakteryzowany jest za pomocą tzw. macierzy charakterystycznej programu. Na
bazie skonstruowanego modelu wyprowadzona została zależność na wartość oczekiwaną
liczby błędów, wykrycie których spodziewane jest w wyniku realizacji procesu testowa-
nia, realizowanego w oparciu o przyjętą strategię testowania. Otrzymana zależność może
być wykorzystana w praktyce, jeżeli macierz charakterystyczna programu jest znana. Dla
przypadku, gdy macierz ta nie jest znana skonstruowane zostało w artykule obustronne
oszacowanie tej wartości oczekiwanej.

Słowa kluczowe: testowanie oprogramowania, niezawodność oprogramowania, modele
niezawodności oprogramowania.

